【名师讲堂】Diffusion Models in Generative AI Enabled Network Optimization

文:|图:信通学院| 发布时间: 2023-10-18 10:38:37|

教师发展中心“名师讲堂”活动特别邀请南洋理工大学Dusit Niyato教授来校作学术交流。具体安排如下,欢迎广大师生参加。

一、主题:Diffusion Models in Generative AI Enabled Network Optimization

二、主讲人:Dusit Niyato教授,南洋理工大学

三、时间:2023年10月26日10:00-12:00

四、地点:腾讯会议 腾讯会议号:230-455-006

五、主讲内容:

Generative Diffusion Models (GDMs) have emerged as a transformative force in the realm of Generative Artificial Intelligence (GAI), demonstrating their versatility and efficacy across a variety of applications. The ability to model complex data distributions and generate high-quality samples has made GDMs particularly effective in tasks such as image generation and reinforcement learning. Furthermore, their iterative nature, which involves a series of noise addition and denoising steps, is a powerful and unique approach to learning and generating data. This presentation gives an introduction on applying GDMs in network optimization tasks. We delve into the strengths of GDMs, emphasizing their wide applicability across various domains. The presentation first provides a basic background of GDMs and their applications in network optimization. This is followed by a series of case studies, showcasing the integration of GDMs with Deep Reinforcement Learning (DRL), Semantic Communications (SemCom), and Internet of Vehicles (IoV) networks. These case studies underscore the practicality and efficacy of GDMs in real-world scenarios, offering insights into network design.

六、主讲人简介:

Dusit Niyato教授,IEEE Fellow,目前是新加坡南洋理工大学计算机科学与工程学院教授,研究方向包括无线和移动网络以及分布式计算,曾获IEEE通信学会亚太区最佳青年研究员奖,2011年IEEE通信学会Fred W. Ellersick论文奖,目前担任IEEE Communications Surveys & Tutorials期刊主编,该期刊影响因子为25.249,是通信领域期刊影响因子排名第一的国际顶级综述期刊,此外,也担任IEEE Transactions on Wireless Communications期刊编辑,担任IEEE Internet of Things Journal、IEEE Transactions on Mobile Computing、IEEE Transactions on Vehicular Technology、IEEE Wireless Communications和IEEE Network期刊副编辑,担任IEEE Journal on Selected Areas on Communications期刊的客座编辑,获誉2016-2017年度IEEE通信学会杰出讲师,2017-2021年度计算机科学领域高被引学者。

七、主办单位:教师发展中心

      承办单位:信息与通信工程学院

教师发展中心

2023年10月16日

清水河校区地址:成都市高新区(西区)西源大道2006号 电子科技大学清水河校区科研楼B区

邮编:611731 Email: xintong@uestc.edu.cn

电话:028-61830156 传真:028-61831665

学院官微

分享